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We determine an exact asymptotic expression of the blow-up timetcoll for self-gravitating Brownian par-
ticles or bacterial populations(chemotaxis) close to the critical point ind=3. We show thattcoll= t*sh
−hcd−1/2 with t* =0.917 677 02. . ., whereh represents the inverse temperature(for Brownian particles) or the
mass(for bacterial colonies), andhc is the critical value ofh above which the system blows up. This result is
in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the
exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large
time asymptotic expansion for the density profile exactly at the critical point.
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I. INTRODUCTION

Recently, several papers have focused on the blow-up
properties of a cluster of self-attracting particles[1–13]. This
concerns in particular the “isothermal collapse”[14] of self-
gravitating Brownian particles and the “chemotactic aggre-
gation” [15] of bacterial populations in biology. These sys-
tems have a similar mathematical structure and they are
described, in a first approximation, by the Smoluchowski-
Poisson system[16]. The Smoluchowski equation is a par-
ticular Fokker-Planck equation in physical space involving a
diffusion due to Brownian motion and a drift. In the standard
Brownian theory developed by Einstein, the drift is due to an
external potential[17]. Alternatively, we can consider the
more complicated situation in which the potential is pro-
duced by the particles themselves. If we assume a Newtonian
type of interaction, we have to couple Smoluchowski’s equa-
tion to Poisson’s equation.

It can be shown that the Smoluchowski-Poisson system
decreases a Lyapunov functionalFfrg which can be inter-
preted as a Boltzmann free energy[18]. Furthermore, the
type of evolution depends on the value of a dimension-
less parameter h. For høhc=2.517 551 32. . ., the
Smoluchowski-Poisson system evolves to an equilibrium
state which minimizes the free energy at fixed mass. It cor-
responds to an isothermal distribution of particles similar to
isothermal stars and isothermal stellar systems[19]. On the
contrary, for h.hc, there is no possible equilibrium state
and the system blows up. This is the case for self-gravitating
Brownian particles below a critical temperatureTc and for
bacterial populations above a critical massMc. It is found
that the collapse is self-similar and that it develops a finite
time singularity, i.e., the central density becomes infinite in a
finite time tcoll [4,5,8,9]. Then a Dirac peak is formed in the
postcollapse regime[12].

It is clear that the collapse timetcoll depends on the dis-
tance to the critical pointhc and that it should diverge as

h→hc. More precisely, by using heuristic arguments, it is
argued in[8] that tcoll, t*shc−hd−1/2. This scaling is consis-
tent with numerical simulations of the Smoluchowski-
Poisson system. However, the approach of[8] is only quali-
tative and does not provide the numerical value oft* .

After some introductory material presented in Sec. II, we
develop a systematic procedure in Sec. III, inspired by[20],
which confirms the scaling lawtcoll, t*shc−hd−1/2 and leads
to the explicit value oft* . In Sec. IV, we study the relaxation
time t to equilibrium belowhc and show that it diverges like
t,chsh−hcd−1/2, wherech is given explicitly. In Sec. V, we
derive a systematic large time expansion of the density pro-
file exactly at hc. In particular, we show that the central
density approaches its equilibrium value according to
r0−rsr =0,td,cr / t, wherecr is a universal constant which
is explicitly computed. Finally, in Sec. VI, we determine the
pulsation period of bounded isothermal spheres described by
the Euler-Jeans equations close to the critical point.

II. SELF-GRAVITATING BROWNIAN PARTICLES
AND BACTERIAL POPULATIONS

A. The model equations

In the overdamped regime, a system of self-gravitating
Brownian particles is described by theN coupled stochastic
equations

dr i

dt
= − m¹iUsr 1, . . . ,r Nd + Î2DRistd, s1d

wherem=1/j is the mobility(j is the friction coefficient), D
is the diffusion coefficient, andRistd is a white noise satis-
fying kRistdl=0 and kRa,istdRb,jst8dl=di jdabdst− t8d, where
a,b=1,2,3 refer to the coordinates of space andi , j
=1, . . . ,N to the particles. We define the temperatureT
=1/b through the Einstein relationm=Db. The particles in-
teract via the potentialUsr 1, . . . ,r Nd=oi, jusr i −r jd. In this
paper,usr i −r jd=−G/ ur i −r ju is the Newtonian binary poten-
tial in d=3 dimensions. Starting from theN-body Fokker-
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Planck equation and using a mean-field approximation
[16,21,22], we can derive the nonlocal Smoluchowski equa-
tion

] r

] t
= ¹ F1

j
sT ¹ r + r ¹ FdG , s2d

where the potentialFsr ,td is produced by the densityrsr ,td
according to the Poisson equation

DF = 4pGr. s3d

In [22,23], the mean-field approximation is shown to become
exact if the thermodynamical limitN→ +` is properly
taken. The self-gravitating Brownian gas has a rigorous ca-
nonical thermodynamic structure[8,16]. Therefore, it can be
seen as the canonical counterpart of the usualN-star problem
governed by Newton’s equations and possessing a microca-
nonical structure.

On the other hand, in a biological context, a model of
chemotactic aggregation exhibiting blow-up phenomena is
provided by the system of equations

] r

] t
= DDr − x ¹ sr ¹ cd, s4d

] c

] t
= D0sDc + lrd, s5d

where r is the concentration of the biological population
(amoebae), c is the concentration of the substance secreted
(acrasin), and x measures the strength of the chemotactic
drift. Equations(4) and(5) can be viewed as a simplification
of the Keller-Segel model[15]. In [24], the approximation
]c/]t<0 is introduced and justified in the regime of strong
diffusion. Equation(5) then becomes

Dc = − lr, s6d

which is strictly identical to Poisson’s equation. This notion
of two coupled diffusion fields where one of them responds
much faster also occurs in the mean-field theory of diffusion
limited aggregation [25]. Both models (self-gravitating
Brownian particles and chemotaxis) are thus isomorphic pro-
vided that we make the identificationF↔−s4pG/ldc,
T↔ s4pGD/lxd, and j↔ s4pG/lxd. Introducing the mass
M =erd3r of the system and the radiusR of the domain, we
can show that the problem depends on the single dimension-
less parameterh=bGM /R [8]. A large value ofh corre-
sponds to a small temperatureT or a large massM. Self-
similar blow-up in various dimensions has been studied in
[4,5] in the biological context. Related problems have been
considered in[8,9,12] in the gravitational context, including
a detailed study of the critical dimensiond=2 and of the
postcollapse regime.

B. The Smoluchowski-Poisson system

In the following, we shall use the gravitational terminol-
ogy but we stress that our results are equally valid for the
biological problem due to the above analogy. By rescaling

the physical parameters adequately[r 8=r /R, r8=r / sM /R3d,
F8=F / sGM /Rd, T8=T/ sGM /Rd, andt8= t / sjR3/GMd], it is
possible to takeM =R=G=j=1 without restriction. Then the
equations of the problem are

] r

] t
= ¹ sT ¹ r + r ¹ Fd, s7d

DF = 4pr, s8d

with proper boundary conditions in order to impose a van-
ishing particle flux on the surface of the confining sphere. If
we restrict ourselves to spherically symmetric solutions, the
boundary conditions are

] F

] r
s0,td = 0, Fs1,td = − 1, T

] r

] r
s1,td + rs1,td = 0.

s9d

With this rescaling, the equations depend only on the tem-
peratureT, or equivalently on the parameterh=1/T. As
mentioned previously, a small temperature is equivalent
(through a rescaling) to a large mass.

Integrating Eq. (8) once, we can rewrite the
Smoluchowski-Poisson system in the form of a single
integro-differential equation

] r

] t
=

1

r2

]

] rHr2ST
] r

] r
+

r

r2E
0

r

rsr8,td4pr82dr8DJ . s10d

The Smoluchowski-Poisson system is also equivalent to a
single differential equation

] M

] t
= TS ]2M

] r2 −
2

r

] M

] r
D +

1

r2M
] M

] r
, s11d

for the quantity

Msr,td =E
0

r

rsr8,td4pr82dr8, s12d

which represents the mass contained within the sphere of
radiusr. The appropriate boundary conditions are

Ms0,td = 0, Ms1,td = 1. s13d

III. ASYMPTOTIC ESTIMATE OF THE COLLAPSE
TIME

A. Systematic expansion

We know that the Smoluchowski-Poisson system blows
up for T,Tc, whereTc is a critical temperature below which
there is no equilibrium state[8]. We shall place ourselves
close to the critical point and expand the mass profile as

Msr,td = Mcsrd + eM1sr,td + e2M2sr,td + ¯ , s14d

whereMcsrd is the equilibrium profile atTc ande is a small
parameter defined as
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e = STc − T

Tc
D1/2

! 1. s15d

We also rescale the time according to

t = t/e. s16d

If we substitute the expansion Eq.(14) in Eq. (11) and set
equal the terms of the same order, we get to order 0

TcS ]2Mc

] r2 −
2

r

] Mc

] r
D +

Mc

r2

] Mc

] r
= 0, s17d

to order 1

TcS ]2M1

] r2 −
2

r

] M1

] r
D +

1

r2

]

] r
sM1Mcd = 0, s18d

and to order 2

] M1

] t
= TcS ]2M2

] r2 −
2

r

] M2

] r
−

]2Mc

] r2 +
2

r

] Mc

] r
D

+
1

r2SMc
] M2

] r
+ M1

] M1

] r
+ M2

] Mc

] r
D . s19d

The boundary conditions are

Mnù0s0,td = 0, Mnù08 s0,td = 0, s20d

Mcs1,td = 1, Mnù1s1,td = 0. s21d

B. Order 0: The equilibrium state Mc„j…

At equilibrium, the condition of hydrostatic balance
T¹r+r¹F=0 combined with the Gauss theoremdF /dr
=Msrd / r2 leads to the relation

Msrd = − Tr2d ln r

dr
. s22d

SinceM8srd=4prr2, we obtain the differential equation

1

r2

d

dr
Sr2T

r

dr

dr
D = − 4pr. s23d

Introducing the functionc through the relation

r = r0e
−c, s24d

where r0 is the central density, and using the normalized
distancej=ar wherea=s4pr0/Td1/2, we can rewrite the re-
lation Eq.(22) in the form

Msjd = T
j2

a
c8sjd. s25d

Furthermore, according to Eq.(23), the functionc is a solu-
tion of the Emden equation

1

j2

d

dj
Sj2dc

dj
D = e−c, s26d

cs0d = c8s0d = 0. s27d

The Taylor expansion of the Emden function near the origin
is

c =
1

6
j2 −

1

120
j4 + ¯ . s28d

Using these results, we can check that the Emden equation
(26) is equivalent to Eq.(17), as it should be. For a given
temperatureTùTc, the Emden equation has to be solved
from j=0 to j=a such that

ac8sad =
1

T
. s29d

For the profile we are considering, at the critical temperature
Tc, we have to stop the integration atac such thatTsacd is
minimum. The conditionf1/Tg8sacd=0 is equivalent to

ace
−csacd

c8sacd
= 1. s30d

It is found numerically thatac=8.993 114 9. . . andTc
=0.397 211 37. . .. As an illustration, we plotT−1sad as a
function of a in Fig. 1. The critical integrated mass density
Mcsjd is shown in Fig. 2.

C. Order 1: The function F„j…

Since Eq.(18) is linear, we look for solutions of the form

M1 = AstdFsjd. s31d

The functionFsjd satisfies the differential equation

d2F

dj2 −
2

j

dF

dj
+

1

j2

d

dj
sFj2c8d = 0, s32d

which is equivalent to

FIG. 1. We plot hsad=T−1sad where a=s4pr0/Td1/2 param-
etrizes the series of equilibria. Fora.ac, unstable modes with
l.0 arise, which are solutions of Eq.(34). The minimum tempera-
ture Tc corresponds precisely to the point of marginal stabilityl
=0 [8].
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d

dj
Sec

j2

dF

dj
D +

F

j2 = 0, s33d

where we have used the Emden equation Eq.(26). Equation
(33) is precisely the equation found at the critical pointTc by
analyzing the linear stability of isothermal spheres[8]. In-
deed, considering a perturbationdM ,elt around a stationary
solutionMsrd of Eq. (11), we get

TS ]2dM

] r2 −
2

r

] dM

] r
D +

1

r2

]

] r
sMdMd = ldM . s34d

If l,0, the stationary solution is stable and, ifl.0, the
stationary solution is unstable. At the critical pointTc where
l=0 (marginal stability), we recover Eq.(18) with M1
=dM. Equation(33) has to be solved with the boundary con-
ditions

Fs0d = F8s0d = 0. s35d

We find thatFsjd can be simply expressed in terms ofcsjd
as [14]

Fsjd = j3e−c − j2c8. s36d

The conditionFsacd=0 determines the critical temperature
Tc. Using Eq.(36), this condition is equivalent to

ace
−csacd

c8sacd
= 1. s37d

Comparing this result with Eq.(30), we find that the criterion
of marginal stabilitysl=0d corresponds to the pointac in the
series of equilibriaT=Tsad where the temperature is mini-
mum (f1/Tg8sacd=0) [8,14].

D. Order 2: The function A„t…

Using the previous results, Eq.(19) can be rewritten

FsjdȦstd = Tcac
2F ]2M2

] j2 −
2

j

] M2

] j
+

1

j2

]

] j
sM2j2c8dG

+ acTc
2j2c8e−c +

ac
3

j2 A2F
dF

dj
. s38d

We now multiply Eq.(38) by a functionxsjd and integrate
between 0 andac. We choose the functionx (see below) so
as to eliminate the terms whereM2 appears. We are thus left
with

Ȧ = KA2 + B, s39d

where

K =
ac

3e0
acsx/j2dFsdF/djddj

e0
acxFdj

, B = acTc
2e0

acxj2c8e−cdj

e0
acxFdj

.

s40d

For future convenience, we note that

F8sjd = j2e−cs2 − jc8d. s41d

By construction, the functionx satisfies the integral relation

E
0

ac F ]2M2

] j2 −
2

j

] M2

] j
+

1

j2

]

] j
sM2j2c8dGxsjddj = 0.

s42d

Integrating by parts and usingM2s0d=M28s0d=M2sad=0, we
obtain

xsacdM28sac,td +E
0

acHd2x

] j2 + S2

j
− c8Ddx

dj
+

2

j2sjc8 − 1dxJ
3M2sj,tddj = 0. s43d

Thus, we impose thatx is a solution of the differential equa-
tion

d2x

] j2 + S2

j
− c8Ddx

dj
+

2

j2sjc8 − 1dx = 0, s44d

with the boundary condition

xs0d = 0. s45d

It turns out that the solution of this equation can be expressed
in terms of the Emden function as

xsjd =
1

j2Fsjdec = j − c8ec, s46d

with x8s0d=2/3. Thefunction xsjd is represented in Fig. 3
along with the functionFsjd. Using Eq. (37), we readily
check thatxsacd=0. Therefore, the condition Eq.(42) is sat-
isfied. Accordingly,Astd is determined by Eq.(39), whereK
andB have to be evaluated using Eq.(40).

E. The blow-up time

The solution of Eq.(39) with Astd→−` ast→0 is

FIG. 2. The integrated mass density is plotted at the critical
point.
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Astd = SB

K
D1/2

tanFtsBKd1/2 −
p

2
G . s47d

Returning to the original time variable, we get

Astd = SB

K
D1/2

tanFts1 − T/Tcd1/2sBKd1/2 −
p

2
G . s48d

Then, we find that the blow-up occurs for

tcoll = t*sh − hcd−1/2, s49d

with

t* = pS hc

BK
D1/2

. s50d

We find numerically that K=62.560 38. . . and B
=0.471 627 4. . .. We thus get

tcoll = t*sh − hcd−1/2, t* = 0.917 677 02 . . . . s51d

This asymptotic result is compared in Fig. 4 with the exact
law tcollsTd obtained by solving the Smoluchowski-Poisson
system numerically.

IV. RELAXATION TIME ESTIMATE FOR T.Tc

We now assumeT.Tc, so that an equilibrium state exists.
We look for a time dependent solution forMsr ,td which
converges exponentially to the equilibrium profile

Msr,td = MTsrd + FTsrde−t/t. s52d

The purpose of this section is to compute the leading
asymptotic form of the relaxation timetsTd→ +` asT goes
to Tc. After inserting this ansatz into the equation of motion
for Msr ,td, we obtain

FT9 + Sf8 −
2

r
DFT8 + a2e−fFT = − stTd−1FT, s53d

where

fsrd = csard. s54d

We have usedr as a coordinate(instead ofj) so as to remain
within a fixed interval of space 0ø r ø1 as we make the
perturbative expansion ina (see below). When T→Tc, we
have a→ac, t→ +`, and FTsrd→Fsacrd, where Fsjd is
given by Eq.(36). We now expand Eq.(53) in power of «
=sac−ad /ac, by introducingfsjd andm such that

FTsrd = Fsacrd + «fsacrd + Os«2d s55d

and

stac
2Tcd−1 = m« + Os«2d. s56d

The relation betweenT−Tc and « will be given later. Col-
lecting terms proportional to«, and settingj=acr, we obtain

f9 + Sc8 −
2

j
D f8 + fe−c −

2

j2FF8 = − mF, s57d

subject to the boundary conditionfs0d= fsacd=0. This eigen-
value problem selects a unique value form and hence fort.
We were not able to solve this problem analytically. How-
ever, we remark that this equation is similar to Eq.(38),
without the term leading toB. We can therefore use the same
trick as in Sec. III D. After multiplying Eq.(57) by the func-
tion x defined in the previous section, we end up with

m =
e0

acf2xsjd/j2gFsjdF8sjddj

e0
acxsjdFsjddj

=
2K

ac
3 = 0.172 027 92 . . . .

s58d

The direct numerical solution of Eq.(57) leads of course to
the same value. The functionfsjd is plotted in Fig. 3.

We now find a simple relation betweenT−Tc and« close
to Tc [14]. Using the conditionac8sad=1/T and the fact that
sjc8duac

8 =0, we obtain

FIG. 3. We plotxsjd (lower full curve), Fsjd (upper full line),
and the eigensolutionfsjd of Eq. (57) (dashed line;fsjd has been
divided by a factor of 3 for convenience).

FIG. 4. We plottcoll3 sTc−Td1/2/Tc computed numerically as a
function of sTc−Td1/2, which should converge to t*
=0.917 977 02. . . . A quadratic fit in the regionsTc−Td1/2,0.05
retrieves the first four digits oft* .
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1

Tc
−

1

T
=

sac − ad2

2
sjc8d

uac
9 + O„sac − ad3

…, s59d

which up to leading order in« can be written in the form

« ,Î 2sT − Tcd
Tcs1 − 2Tcd

. s60d

Finally, we obtain the following diverging behavior fort:

t−1 , mÎ2TcsT − Tcd
1 − 2Tc

ac
2. s61d

Numerically, we get

t , cTsT − Tcd−1/2 , chshc − hd−1/2 s62d

with

cT = 0.036 563 056 . . . , ch = 0.092 049 37 . . . . s63d

V. THE DECAY OF THE DENSITY PROFILE AT T=Tc

Strictly at T=Tc, t= +`, and one expects a slow conver-
gence to the equilibrium profileMcsrd. Let us write

Msr,td = Mcsrd − AstdM1srd − BstdM2srd + ¯ . s64d

We implicitly assume thatBstd!Astd as t→ +`. Moreover,
the presence of the minus signs in Eq.(64) anticipates the
fact that on starting from a flat density the central density
increases. In[8], it was argued based on a heuristic argument
that Astd, t−1. It is the purpose of this section to justify this
statement as well as to give more quantitative estimates.

Let us postulate for the moment the natural choiceBstd
,Astd2, which will be justified hereafter. Inserting this ansatz
again in the dynamical equation forMsr ,td and collecting
terms of orderAstd and Astd2, we immediately find that the
first equation leads to

M1srd =Î2Tc

ac
Fsacrd, s65d

where the constant has been set for later convenience, as
multiplying M1 and dividingA by the same constant leaves
the expansion forM unchanged. SettingM2srd=gsacrd, we
find thatg satisfies

g9 + Sc8 −
2

j
Dg8 + ge−c −

2

j2FF8 = − lF, s66d

with

l = −
Ȧ

A2Î2ac

Tc
ac

−3, s67d

which must be a constant independent of time. Thanks to the
proper choice of the constant in Eq.(65), we find that Eq.
(66) and Eq.(57) are identical. The only physical solution
with gs0d=gsacd=0 corresponds to the eigenvaluel=m. Fi-
nally, we find

Astd , t−1m−1Î2ac

Tc
ac

−3. s68d

Once the signs have been fixed in Eq.(64), we indeed find
that the small time correction to the central density is neces-
sarily negative, asM1, M2 (or g), and A are found to be
positive. Therefore, the equilibrium profileMcsrd is ap-
proached from below, which is natural since an excess of
mass would provoke gravitational collapse.

Let us illustrate this result by calculating the correction to
the central density. Using Eq.(65) and Eq.(68), and the fact
that Mcsrd,s4p /3dr0r

3 andFsjd,s2/3dj3, we find that for
large time the central density converges tor0 from below in
a universal manner,

r0 − rsr = 0,td =
cr

t
+ Ost−2d, s69d

with

cr = spmd−1 = 1.850 338 5 . . . . s70d

This result is illustrated quantitatively in Fig. 5.
Finally, we discuss thea priori unjustified choiceBstd

,A2std. The caseBstd!A2std is clearly impossible as it
amounts to takingg=0 in Eq. (66), leading to an equation
that is never satisfied byF, whatever the choice forAstd. The
opposite caseBstd@A2std leads to an equation similar to Eq.
(66) but where the term proportional toFF8 is absent. For
this equation, it is clear that if a solutiong0 exists for a
specificl0, thenl /l0g0 is also a solution associated withl.
This implies that the only solution satisfying the boundary
conditiongs0d=gsacd=0 is actually the null function associ-
ated tol=0, which is not permitted forT.Tc. HenceBstd
,A2std is the only possibility leading to a physically sensible
solution.

FIG. 5. At T=Tc, and starting from a uniform mass density, we
have computed numericallyr0−rsr =0,td, wherer0 is the equilib-
rium central density. This is compared with the exact and universal
large time estimatecr / t, with cr=spmd−1=1.850 338 5. . .(dashed
line).
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VI. THE PULSATION PERIOD OF ISOTHERMAL
SPHERES

In Sec. IV, we have determined the relaxation time of
self-gravitating Brownian particles described by the
Smoluchowski-Poisson system close to the critical pointTc.
Writing the perturbation asdr,elt wherel=−1/t, the ei-
genvalue equation forl can be written in dimensional form
as [8]

d

dr
S 1

4prr2

dq

dr
D +

Gq

Tr2 =
lj

4prTr2q, s71d

whereqsrd=dMsrd. This equation is the same as Eq.(53).
Using the result of Sec. IV, and returning to dimensional
parameters, the inverse relaxation time is given by

l = 7
1

ch

shc − hd1/2GM

jR3 . s72d

The sign − corresponds toa,ac and leads to exponentially
damped perturbations(stable). The sign + corresponds to
a.ac and leads to exponentially growing perturbations(un-
stable).

We now consider the case of gaseous self-gravitating sys-
tems(stars) described by the Euler-Jeans equations

] r

] t
+ ¹ · srvd = 0, s73d

] v

] t
+ sv · ¹ dv = −

1

r
¹ p − ¹ F, s74d

DF = 4pGr. s75d

We use an isothermal equation of statep=rT and we assume
that the system is confined within a region of sizeR. These
equations provide the usual starting point for the analysis of
the gravitational stability of gaseous systems. The case of an
infinite homogeneous medium was first investigated by Jeans
[26] in his classical study. The case of a finite inhomoge-
neous isothermal medium was considered by Chavanis[14].
In that case, the equation of pulsation can be written in the
form

d

dr
S 1

4prr2

dq

dr
D +

Gq

Tr2 =
l2

4prTr2q, s76d

where, as before,dr,elt. Comparing with Eq.(71), we see
that the results of Sec. IV remain valid provided thatlj is
replaced byl2. Therefore, Eq.(72) translates into

l2 = 7
1

ch

shc − hd1/2GM

R3 . s77d

For a.ac, the eigenvaluel= ±Îl2 can be positive, imply-
ing instability. For a,ac, the eigenvaluel= ± iÎ−l2 is
purely imaginary so that the time evolution of the perturba-
tion has an oscillatory nature. Close to the critical point, the
pulsation period is given by

v =
1

Îch

shc − hd1/4SGM

R3 D1/2

. s78d

VII. CONCLUSION

In this paper, we have obtained the asymptotic expres-
sions of the blow-up time and relaxation time of self-
gravitating Brownian particles and biological populations
close to the critical point of collapse ind=3. An excellent
agreement is obtained by numerically solving the
Smoluchowski-Poisson system. This study confirms and im-
proves the results obtained in[8] on the basis of heuristic
arguments. A possible extension of this work would be to
consider the case of polytropic distributions arising in case of
anomalous diffusion[11]. More generally, we could consider
the generalized Smoluchowski equation(81) proposed in
[18] which is valid for an arbitrary equation of state. This
equation can provide(among other applications) a general-
ized chemotactic model valid when the diffusion coefficient
or the drift term depends on the density. These extensions
will be considered in future works.

It can be noted that the exact determination of the collapse
time is specific to our model. As far as we know, in other
works on gravitational collapse, the collapse timetcoll is just
left as a constant of integration. Our situation is original
because, as we work in a bounded domain, we can have
either equilibrium(for T.Tc) or collapse(for T,Tc). Then
the collapse time depends on the distance toTc at which it
diverges. There is no critical temperature in other models of
gravitational collapse which consider an infinite domain.
Therefore, the collapse time is probably not universal in
these models(and depends on the initial conditions), con-
trary to our situation close toTc.
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