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We determine an exact asymptotic expression of the blow-up tigjefor self-gravitating Brownian par-
ticles or bacterial populationschemotaxi$ close to the critical point ind=3. We show thatt. =t«(#
- 79 Y2 with t.=0.917 677 02..., wherg represents the inverse temperat(fd Brownian particlesor the
mass(for bacterial colonies and 7, is the critical value ofy above which the system blows up. This result is
in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the
exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large
time asymptotic expansion for the density profile exactly at the critical point.
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I. INTRODUCTION n— 7. More precisely, by using heuristic arguments, it is

Recently, several papers have focused on the b|0W_u?rgued_|n[8] that teg ~ t- (7~ )72 This scaling is consis-
properties of a cluster of self-attracting particfés13. This ~ tent with numerical simulations of the Smoluchowski-
concerns in particular the “isothermal collapgé?] of self-  Poisson system. However, the approacti8jfis only quali-
gravitating Brownian particles and the “chemotactic aggretative and does not provide the numerical valug.of

gation” [15] of bacterial populations in biology. These sys-  After some introductory material presented in Sec. I, we
tems have a similar mathematical structure and they ardevelop a systematic procedure in Sec. Ill, inspired 28,
described, in a first approximation, by the Smoluchowski-which confirms the scaling lawy,; ~t-(7.— 7)*? and leads
Poisson systenfil6]. The Smoluchowski equation is a par- to the explicit value of.. In Sec. IV, we study the relaxation
ticular Fokker-Planck equation in physical space involving atime 7 to equilibrium belows, and show that it diverges like
diffusion due to Brownian motion and a drift. In the standard ~ c, (- 70712, wherec, is given explicitly. In Sec. V, we
Brownian theory developed by Einstein, the drift is due to anyerjye a systematic large time expansion of the density pro-
external potentia[17]. Alternatively, we can consider the o exactly at7,. In particular, we show that the central

more complicated situation in which the potential is Pro-gensity approaches its equilibrium value according to

duced by the particles themselves. If we assume a NeWton'aﬂo—p(r:O,t)~cp/t, wherec, is a universal constant which

type of interaction, we have to couple Smoluchowski’'s equa: . . . .
tion to Poisson’s equation. is explicitly computed. Finally, in Sec. VI, we determine the

It can be shown that the Smoluchowski-Poisson syste ulsation period of bounded isothermal spheres described by

decreases a Lyapunov functiorf@llp] which can be inter- the Euler-Jeans equations close to the critical point.
preted as a Boltzmann free enerffy8]. Furthermore, the
type of evolution depends on the value of a dimension-
less parameter . For #5<.=2.51755132..., the
Smoluchowski-Poisson system evolves to an equilibrium
state which minimizes the free energy at fixed mass. It cor- A. The model equations
responds to an isothermal distribution of particles similar to
isothermal stars and isothermal stellar syst¢h®§. On the
contrary, for > 7, there is no possible equilibrium state

Il. SELF-GRAVITATING BROWNIAN PARTICLES
AND BACTERIAL POPULATIONS

In the overdamped regime, a system of self-gravitating
Brownian particles is described by tihecoupled stochastic

and the system blows up. This is the case for seh‘—gravitatingequaltlons
Brownian particles below a critical temperatufg and for dr; —
bacterial populations above a critical mads. It is found i —uVil(ry, ... ,ry) + V2DR;(1), 1)

that the collapse is self-similar and that it develops a finite
time singularity, i.e., the central density becomes infinite in avhereu=1/¢ is the mobility(¢ is the friction coefficient D
finite time ty; [4,5,8,9. Then a Dirac peak is formed in the is the diffusion coefficient, an®;(t) is a white noise satis-
postcollapse regimgl2]. fying (Rj())=0 and (R,;(t)Ry;(t"))= & dapd(t—t"), where
It is clear that the collapse timig,, depends on the dis- a,b=1,2,3 refer to the coordinates of space amgj
tance to the critical pointy, and that it should diverge as =1,... N to the particles. We define the temperatufe
=1/ through the Einstein relation=Dg. The particles in-
teract via the potential(rq, ... ry)=2i-u(ri—r;). In this
*Electronic address: chavanis@irsamc.ups-tlse.fr paper,u(ri=r;)=-G/|r;-r|| is the Newtonian binary poten-
"Electronic address: clement.sire@irsamc.ups-tise.fr tial in d=3 dimensions. Starting from thi¥-body Fokker-
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Planck equation and using a mean-field approximatiorthe physical parameters adequatgly=r /R, p’=p/(M/R®),
[16,21,22, we can derive the nonlocal Smoluchowski equa-®’'=®/(GM/R), T'=T/(GM/R), andt’' =t/ (¢R3/GM)], it is
tion possible to takéM =R=G=¢=1 without restriction. Then the

equations of the problem are
dp 1
5=V{E(Tvp+pvq>)] @ 5
2P VAV p+pV D), 7)
where the potentiab(r,t) is produced by the densip(r,t) at
according to the Poisson equation
AD =47p, (8)

AD = 47Gp. (3)
. N with proper boundary conditions in order to impose a van-
In [22,23, the mean-field approximation is shown to becomelshmg particle flux on the surface of the confining sphere. If

exact if the therquy_namlcal I|_rn|N—>+oo IS p_roperly we restrict ourselves to spherically symmetric solutions, the
taken. The self-gravitating Brownian gas has a rigorous Caboundary conditions are

nonical thermodynamic structuf8,16]. Therefore, it can be
seen as the canonical counterpart of the uBlisilar problem EX)
governed by Newton’s equations and possessing a microca- —(0 =0, ®1,)=-1, T—(l t)+p(L,t)=0
nonical structure.

On the other hand, in a biological context, a model of 9
chemotactic aggregation exhibiting blow-up phenomena i

provided by the system of equations With this rescaling, the equations depend only on the tem-

peratureT, or equivalently on the parametey=1/T. As
ap mentioned previously, a small temperature is equivalent
—-=DAp-xV(pVo), (4)  (through a rescalingto a large mass.

ot Integrating EqQ. (8) once, we can rewrite the
Smoluchowski-Poisson system in the form of a single
[?—f =Dy(Ac+ \p), (5) integro-differential equation
. . . . . dp 14 ip p
where p is the concentration of the biological population —:—2—{r2<T J p(r’ H)Amr'2dr’ )} (10
(amoebag c is the concentration of the substance secreted atrear ar r

(acrasin, and y measures the strength of the chemotacti
drift. Equationg(4) and(5) can be viewed as a simplification
of the Keller-Segel mode]15]. In [24], the approximation

dgcl at=0 is introduced and justified in the regime of strong IM (azM 2&M> 1 M

cThe Smoluchowski-Poisson system is also equivalent to a
single differential equation

J
diffusion. Equation(5) then becomes +SM—, (11

ot \ar2 rar) 2 ar

Ac=-\p, 6 )
P © for the quantity

which is strictly identical to Poisson’s equation. This notion
of two coupled diffusion fields where one of them responds
much faster also occurs in the mean-field theory of diffusion
limited aggregation[25]. Both models (self-gravitating
Brownian particles and chemotaxisre thus isomorphic pro- which represents the mass contained within the sphere of
vided that we make the identificatiod — —(47G/N\)c,  radiusr. The appropriate boundary conditions are

T+ (47GD/\y), and é— (47G/\y). Introducing the mass

M=[pd3 of the system and the radifsof the domain, we M(©O,)=0, M(L1t)=1. 13

can show that the problem depends on the single dimension-

less parameter;=BGM/R [8]. A large value of% corre-

sponds to a small temperatufeor a large mas. Self- Ill. ASYMPTOTIC ESTIMATE OF THE COLLAPSE

similar blow-up in various dimensions has been studied in TIME

[4,5] in the biological context. Related problems have been A. Systematic expansion

considered ir8,9,13 in the gravitational context, including
a detailed study of the critical dimensiail=2 and of the
postcollapse regime.

M(r,t) :f p(r’ t)4mr'2dr’, (12
0

We know that the Smoluchowski-Poisson system blows
up for T<T,, whereT, is a critical temperature below which
there is no equilibrium statg8]. We shall place ourselves
close to the critical point and expand the mass profile as

B. The Smoluchowski-Poisson system

. - _ M(r,t) = M(r) + eMy(r,t) + EMp(r,t) + -++,  (14)
In the following, we shall use the gravitational terminol-

ogy but we stress that our results are equally valid for thevhereM(r) is the equilibrium profile af, and € is a small

biological problem due to the above analogy. By rescalingparameter defined as
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T-T 1/2
e:( £ > <1. (15)
Te
We also rescale the time according to
t=1le. (16)

If we substitute the expansion E¢l4) in Eq. (11) and set
equal the terms of the same order, we get to order 0

#M, 2M MM
( 2|t =0, (17
ar roar re ar
to order 1
M, 2a|v|1>
- = —— (MM 0, 18
<ar2 rooar rar( Mo) = (18
and to order 2
IMy #M, 29M, M, 2JIM,
:TC > = - > + —
ar ar roar ar rar
1 oM oM IM
+—2<M 24 My—= + M, °). (19)
r ar ar ar
The boundary conditions are
M =0(0,7) =0, Mr’1>0(017') =0 (20
M(1,7=1, M,=,(1,7=0. (21)

B. Order 0: The equilibrium state My(£)

At equilibrium, the condition of hydrostatic balance
TVp+pVd=0 combined with the Gauss theoredd/dr
=M(r)/r? leads to the relation

dinp
dr °

M(r)=-Tr? (22

SinceM'(r)=4mpr?, we obtain the differential equation

1d 2po)
——\r°—=— | == 4mp. 23
r2dr< dr P 23
Introducing the function/ through the relation
p=poe’, (24)

where pg is the central density, and using the normalized

distanceé=ar wherea=(4mp,/ T)Y2, we can rewrite the re-
lation EQ.(22) in the form
§2
M(§) = T; P (). (25
Furthermore, according to E¢R3), the functiony is a solu-
tion of the Emden equation

d
2 d§<§2 ?) e, (26
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2 — —
£
1k |
A<0
(stable)
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FIG. 1. We plot 7(a)=TX(a) where a=(4mpy/T)Y2 param-
etrizes the series of equilibria. Fer> a;, unstable modes with
\>0 arise, which are solutions of E(R4). The minimum tempera-
ture T, corresponds precisely to the point of marginal stabikity
=01[8].

W0)=¢'(0)=0

The Taylor expansion of the Emden function near the origin
is

(27)

T

120 (28)

Using these results, we can check that the Emden equation
(26) is equivalent to Eq(17), as it should be. For a given
temperatureT=T,, the Emden equation has to be solved
from £=0 to £=a such that

1
/ =—, 29
ay' () T (29
For the profile we are considering, at the critical temperature
T., we have to stop the integration af such thatT(«.) is
minimum. The conditiof1/T]'(a;)=0 is equivalent to

e_lﬁ(ac)
- (30)
U (a’c)
It is found numerically that«,=8.9931149... andT,

=0.397 211 37.... As an illustration, we pldti(a) as a
function of « in Fig. 1. The critical integrated mass density
Mc(é) is shown in Fig. 2.

C. Order 1: The function F(&)
Since Eq(18) is linear, we look for solutions of the form

My =A(1F(§). (31)
The functionF(¢) satisfies the differential equation
d’F 2dF 1d _,
92 fde gzdg(FSlﬂ) 0, (32

which is equivalent to
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T ' ' ' ' : PM, 20M, 149
F(&A(T) =Tca’§ 19522 f 07§2 6285( 25290 )
T.=0.39721137...
2.0, o dF
+a T8y e+ g—gAde—g. (39
- We now multiply Eq.(38) by a functiony(¢) and integrate
;‘% 05 - between 0 andy.. We choose the functiog (see below so
as to eliminate the terms wheké, appears. We are thus left
with
A=KAZ+B, (39
where
l ‘ l . l ‘ l . a a ,
% 02 04 06 08 i (- CICWEFRdadE o exéy e
&, doxFdg ' C doyFdE
FIG. 2. The integrated mass density is plotted at the critical (40
point. For future convenience, we note that
d (e‘”dF) F =3 F'(§=&el2-&)). (41)
de\&dg/) & By construction, the functiory satisfies the integral relation
where we have used the Emden equation(26). Equation % | M, 2(9M2 19 °
(33) is precisely the equation found at the critical poipty 08 _E Py ?_f( 28°Y") |x(§)dE=0.

analyzing the linear stability of isothermal sphef&%. In-
deed, considering a perturbatiéM ~ eM around a stationary (42)

solutionM(r) of Eq. (11), we get Integrating by parts and using,(0)=M5(0)=My(a)=0, we

(925M 29 6M 19 obtain
T( > - ——) +—=—(MéM)=\M. (34
ar r ar r<ar ) |l d?y (2 dX
X(ac)MZ(QCyT)+J Pyl - d z(flﬂ -y
If A<<0, the stationary solution is stable and,\if>0, the o L€ £ & ¢

stationary solution is unstable. At the critical poiitwhere XM(&7)dé=0. (43)
A=0 (marginal stability, we recover Eq.(18) with M, _ . _ _ _
=5M. Equation(33) has to be solved with the boundary con- Thus, we impose thaj is a solution of the differential equa-

ditions tion
— ) = d? 2 dy
F(0)=F'(0)=0. (35 &—gg+ <E w)dg gz(étlf Dx=0, (44)
We find thatF(£) can be simply expressed in terms i#f¢)
as[14] with the boundary condition
F(o)=8eV-&y. (36) x(0)=0. (45)

It turns out that the solution of this equation can be expressed

The conditionF(a.)=0 determines the critical temperature in terms of the Emden function as

T.. Using Eq.(36), this condition is equivalent to
1
age M) x()= ?F(§)e¢= E-y'e, (46)

; (37
W (ap) . . . . .
with x’(0)=2/3. Thefunction x(¢) is represented in Fig. 3
Comparing this result with E¢30), we find that the criterion  along with the functionF(&). Using Eq.(37), we readily
of marginal stability(\ =0) corresponds to the point; inthe  check thaty(a,)=0. Therefore, the condition E¢42) is sat-
series of equilibrial =T(«) where the temperature is mini- sfied. Accordingly,A(7) is determined by Eq:39), whereK

mum ([1/T]'(e) =0) [8,14). andB have to be evaluated using E¢0).
D. Order 2: The function A(7) E. The blow-up time
Using the previous results, E(L9) can be rewritten The solution of Eq(39) with A(7) —-» as7—0 is
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x(€), FE), f(€)/3

&

<

FIG. 3. We plotx(¢) (lower full curve, F(¢) (upper full line,
and the eigensolution(¢) of Eq. (57) (dashed linef(£€) has been
divided by a factor of 3 for convenienge

o)

Returning to the original time variable, we get

(2

Then, we find that the blow-up occurs for

1/2

tan[r(BK)llz— g} (47)

1/2 T
tan| t(1 - T/T)Y4BK)Y2 - S| (48)

teon = te(m - 77c)_1/2’ (49)
with
1/2
= w(ﬂ> . (50)
BK

We find numerically that K=62.56038... and B

=0.471 627 4.... We thus get
teon =t(7— 7Y% t.=091767702.... (51

This asymptotic result is compared in Fig. 4 with the exact

law t.o;(T) obtained by solving the Smoluchowski-Poisson
system numerically.

IV. RELAXATION TIME ESTIMATE FOR T>T,

We now assum@& >T,, so that an equilibrium state exists.
We look for a time dependent solution fdi(r,t) which
converges exponentially to the equilibrium profile

M(r,t) = M(r) + F(r)e’V". (52)

The purpose of this section is to compute the leading

asymptotic form of the relaxation tim&T) — +« asT goes
to T,. After inserting this ansatz into the equation of motion
for M(r,t), we obtain

2
F%+(¢"F>F%+a2e‘¢FT (7H7Fr, (53

where

PHYSICAL REVIEW E 70, 026115(2004)

I .
0.9176770...

< _______
090y .
Ss
N,
\&
\.\\
Hu 0.8+ \'b -
EJN N
& N
b’“ 0.7+ Ny -
,=3 ’ “e.,
- M ‘o,
0.6 ‘o i
o
t O
| | |
0'50 0.1 0.2 0.3 0.4
(TC—T)I/Z

FIG. 4. We plotts X (T.—T)¥2/T, computed numerically as a
function of (T,—T)Y2 which should converge to t.
=0.917 977 02... . A quadratic fit in the regidii,—T)*?><0.05
retrieves the first four digits df.

$(r) = far). (54)
We have used as a coordinatéinstead of¢) so as to remain
within a fixed interval of space €r=<1 as we make the
perturbative expansion in (see below. WhenT—T., we
have a— a;, 7— +%, and F(r) —F(a), where F(§) is
given by Eq.(36). We now expand Eq53) in power of e
=(a.—a)l ag, by introducingf(¢) and u such that

Fr(r) =F(acr) + ef(agr) + O(e?) (55)

and

(1a2T) ™ = pe + O(£?). (56)
The relation betweel -T, and ¢ will be given later. Col-
lecting terms proportional te, and settingg=a.r, we obtain

2 2
f”+<zp’—E>f’+fe"/’—?FF’:—,uF, (57)

subject to the boundary conditidf0) =f(a.)=0. This eigen-
value problem selects a unique value foland hence forr.
We were not able to solve this problem analytically. How-
ever, we remark that this equation is similar to Eg8),
without the term leading t8. We can therefore use the same
trick as in Sec. Il D. After multiplying Eq(57) by the func-
tion y defined in the previous section, we end up with

2K
=5=0.17202792....

ac

_ JEMOIEIFOF (9 _
[5x(OF (9dé

(58)

The direct numerical solution of E¢57) leads of course to
the same value. The functidiié) is plotted in Fig. 3.

We now find a simple relation betwednr-T, ande close
to T, [14]. Using the conditionxy’ (o) =1/T and the fact that
(fz//){a =0, we obtain
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(ac— a,)2
2

(&) +Ol(ac=a)), (59

1. 1_
T. T

which up to leading order i@ can be written in the form
[ 2(T-Ty
e~ - .
Tc(l - ZTC)

Finally, we obtain the following diverging behavior faor

(60)

_ [2T(T-Ty)
e M {_—2_'_6(:6(3. (61)
Numerically, we get
T~ c(T-T) 2 ~c (.- n) (62)

with

¢r=0.036 563 056 ..., ¢,,=0.092 049 37 ... . (63)

V. THE DECAY OF THE DENSITY PROFILE AT T=T,

Strictly at T=T,, 7=+, and one expects a slow conver-
gence to the equilibrium profil®(r). Let us write
M(r,t) = Mc(r) = AOMy(r) = BO)Ma(r) + ---. (64)

We implicitly assume thaB(t) <A(t) ast— +. Moreover,
the presence of the minus signs in E§4) anticipates the

PHYSICAL REVIEW E70, 026115(2004

Py (0.0)

S —
t

~100
FIG. 5. AtT=T,, and starting from a uniform mass density, we
have computed numerically,—p(r=0,t), wherepg is the equilib-
rium central density. This is compared with the exact and universal
large time estimate,/t, with cp:(w,u)‘1=1.850 338 5.. (dashed

line).
2
At) ~ t71u Tﬁcags.

C

(68)

Once the signs have been fixed in E64), we indeed find
that the small time correction to the central density is neces-
sarily negative, asM,, M, (or g), and A are found to be
positive. Therefore, the equilibrium profil®.(r) is ap-

fact that on starting from a flat density the central densityproached from below, which is natural since an excess of
increases. 11fi8], it was argued based on a heuristic argumenimass would provoke gravitational collapse.

that A(t) ~t™L. It is the purpose of this section to justify this
statement as well as to give more quantitative estimates.
Let us postulate for the moment the natural chde

Let us illustrate this result by calculating the correction to
the central density. Using E¢65) and Eq.(68), and the fact
that M(r) ~ (47/3)por® andF(€) ~ (2/3) €3, we find that for

~ A(t)%, which will be justified hereafter. Inserting this ansatz large time the central density convergesptdrom below in

again in the dynamical equation fdd(r,t) and collecting
terms of orderA(t) and A(t)?, we immediately find that the
first equation leads to

2
My(r) = | 2 Far),

C

(65)

where the constant has been set for later convenience,
multiplying M, and dividingA by the same constant leaves
the expansion foM unchanged. Settinyl,(r)=g(agr), we
find thatg satisfies

2 2
9”+(W-—)9’+ge V- SFF' =-\F, (66)
3 3
with
A 2. _
’\*; T—:aj, (67)

a universal manner,

C
po—p(r=04)= f +0(t™?), (69
with
as
C,= (1T,u)_1: 1.8503385.... (70

This result is illustrated quantitatively in Fig. 5.

Finally, we discuss the priori unjustified choiceB(t)
~AZ(t). The caseB(t)<AZ(t) is clearly impossible as it
amounts to takingg=0 in Eg. (66), leading to an equation
that is never satisfied by, whatever the choice fok(t). The
opposite cas®(t) > A(t) leads to an equation similar to Eq.
(66) but where the term proportional teF’ is absent. For
this equation, it is clear that if a solutiogy exists for a
specifichg, then\/\ygg is also a solution associated with

which must be a constant independent of time. Thanks to thé&his implies that the only solution satisfying the boundary

proper choice of the constant in E@5), we find that Eq.
(66) and Eq.(57) are identical. The only physical solution
with g(0)=g(a.)=0 corresponds to the eigenvalne u. Fi-
nally, we find

conditiong(0)=g(a,) =0 is actually the null function associ-
ated toA=0, which is not permitted foll >T.. HenceB(t)

~ A?(t) is the only possibility leading to a physically sensible
solution.
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VI. THE PULSATION PERIOD OF ISOTHERMAL . 1 1/2GM
SPHERES A= F C—(%— sy (77
n
In Sec. IV, we have determined the relaxation time of . 3 L
! =+ -
self-gravitating Brownian particles described by the F or a> ag, the eigenvalua.=+ A" can be positive, imply

) ° - . ing instability. For a<ea,, the eigenvalue=+iy-\? is
SmQIUChOWSk"PO'SSpn system ctlose to the critical piﬁg_nt purely imaginary so that the time evolution of the perturba-
Writing the perturbation agp~ e\ wherex=-1/7, the ei-

) . o ; tion has an oscillatory nature. Close to the critical point, the
ge?g/]alue equation fax can be written in dimensional form pulsation period is given by
as

1/2
GM) . (78

1
w=—=(n.~ 71)1/4<F
Ve,

d( 1 dq)+Gq_ \E 71

dr 47Tpl’za ™ 47'rpTr2q'

whereq(r)=6M(r). This equation is the same as E§3). VII. CONCLUSION
Using the result of Sec. IV, and returning to dimensional

) oo RS In this paper, we have obtained the asymptotic expres-
parameters, the inverse relaxation time is given by

sions of the blow-up time and relaxation time of self-

1 1,CGM gravitating Brownian particles and biological populations
AN=F (-7 5. (72)  close to the critical point of collapse id=3. An excellent
c R . . . :
K agreement is obtained by numerically solving the

The sign — corresponds @< o, and leads to exponentially Smoluchowski-Poisson system. This study confirms and im-
damped perturbationéstablg. The sign + corresponds to proves the results obtained [8] on the basis of heuristic
a> a. and leads to exponentially growing perturbatigns-  arguments. A possible extension of this work would be to

stablg. consider the case of polytropic distributions arising in case of
We now consider the case of gaseous self-gravitating syssnomalous diffusiofll]. More generally, we could consider
tems(starg described by the Euler-Jeans equations the generalized Smoluchowski equati¢dl) proposed in
J [18] which is valid for an arbitrary equation of state. This
P, V -(pv) =0, (73) equation can providéamong other applicatiopng general-
at ized chemotactic model valid when the diffusion coefficient

or the drift term depends on the density. These extensions
will be considered in future works.
It can be noted that the exact determination of the collapse
time is specific to our model. As far as we know, in other
A®D = 47Gp. (75)  works on gravitational collapse, the collapse titgg is just
) ) left as a constant of integration. Our situation is original
We use an isothermal equation of stptepT and we assume  pecause, as we work in a bounded domain, we can have
that the system is confined within a region of sReThese gijther equilibrium(for T>T,) or collapse(for T<T,). Then
equations provide the usual starting point for the analysis ofe collapse time depends on the distancd tat which it
the gravitational stability of gaseous systems. The case of afyerges. There is no critical temperature in other models of
infinite homogeneous medium was first investigated by Jeangrayitational collapse which consider an infinite domain.
[26] in his classical study. The case of a finite inhomoge-Therefore, the collapse time is probably not universal in

neous isothermal medium was considered by Chavadis  these modelgand depends on the initial conditionson-
In that case, the equation of pulsation can be written in thgqary to our situation close t®,.

form

av 1
—+(v:-V)v===-Vp- VO, (74)
ot P
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